

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular Research Division

Submitted to the Journal of Chemical Physics

OPTICAL SPECTRA AND ZEEMAN EFFECT FOR Er^{3+} IN LuPO_4 AND HfSiO_4

T. Hayhurst, G. Shalimoff, N. Edelstein, L.A. Boatner, and M.M. Abraham

January 1981

RECEIVED
LAWRENCE
DERKELEY LABORATORY

MAR 24 1981

LIBRARY AND

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

OPTICAL SPECTRA AND ZEEMAN EFFECT FOR ${\rm Er}^{3+}$ IN ${\rm LupQ}_4$ AND ${\rm Hfsio}_4$

T. Hayhurst, G. Shalimoff, and N. Edelstein Materials and Molecular Research Division Lawrence Berkeley Laboratory University of California, Berkeley 94720

and

L. A. Boatner and M. M. Abraham Solid State Division, Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

ABSTRACT

The absorption spectra of ${\rm Er}^{3+}$ diluted in ${\rm LuPO}_4$ and ${\rm HfSiO}_4$ crystals have been measured from 6,000 to 28000 cm $^{-1}$ at liquid He and N $_2$ temperatures. Zeeman spectra were obtained in the visible region. The transitions were assigned and fitted to a semiempirical Hamiltonian with ten adjustable parameters. Satisfactory fits were obtained including reasonable agreement between calculated and measured g values.

		C ,
		u ÷
		,

The relatively long half-lives $(10^3 \text{ to } 10^5 \text{ yr})$ of many of the actinide isotopes produced as a by-product of nuclear reactor operation represent a severe constraint on the selection of a suitable substance for the primary isolation or containment of nuclear wastes. An examination of geological evidence has recently led to the suggestion 1,2 that synthetic analogs of the mineral monazite $[(\text{La, Ce, Nd. Y, ...})\text{PO}_4]$ have chemical and physical properties that make them attractive candidates as host materials for long-term storage of actinide wastes. Accordingly, the characterization of possible sites where actinide (and other) impurity ions can be incorporated in these materials and a determination of the oxidation states of these ions is pertinent to understanding the interrelationship between the chemical and physical properties of the lanthanide orthophosphate-impurity systems and the parameters appropriate to an acceptable stable waste form.

The pure lanthanide orthosphosphates are structurally divided into two classes: the first half of the series ($LaPO_4$ to $GdPO_4$) has the monoclinic monazite structure, while the second half of the series ($TbPO_4$ to $LuPO_4$, plus YPO_4 , and $ScPO_4$) is characterized by the tetragonal zircon structure. Previous work using the electron paramagnetic resonance (EPR) technique with the lanthanide ion Gd^{3+} employed as a probe has shown that this ion occupies identical substitutional sites in both single crystal and powder samples in either the tetragonal or monoclinic symmetry orthophosphates. $^{3-5}$ More recent EPR investigations 6,7 have been carried out for other lanthanides that are either direct analogs of or have properties that are directly

related to the actinide ions of interest. These studies have included work on Ce^{3+} , Nd^{3+} , Dy^{3+} , Er^{3+} , and Yb^{3+} in the tetragonal-symmetry hosts $LuPO_4$, YPO_4 , and $ScPO_4$. In the present work the results of complementary optical absorption and Zeeman effect studies are reported in the range from 0.4 to 3.0 nm for Er^{3+} as a dilute impurity in $LuPO_4$. Energy levels were assigned to states derived from the constraint of an \mathbf{f}^{11} configuration restricted to \mathbf{D}_{2d} point symmetry, and were fit to a semiempirical Hamiltonian by a least-squares minimization. Parameters describing the electrostatic, spin-orbit, and crystal field interactions were adjusted. Results of this analysis, along with the previously reported EPR measurements, were used to assign the optical spectra of Er^{3+} in $\mathrm{HfSi0}_{\mathrm{d}}$ that are also reported here. Although hafnium silicate is isostructural with $LuPO_A$, it appears that the trivalent Er ion can substitute into more than one site in the silicate host crystal. 8 By a close comparison with the ${\rm Er}^{3+}:{\rm LuPO}_{\it L}$ system, the spectra associated with only the D_{2d} site were assigned and good agreement was obtained between the experimental and calculated energy levels. The crystal field parameters reported here provide a basis for future work on tetrapositive actinide ions (e.g., ${\rm Np}^{4+}$) in this type of host crystal.

EXPERIMENTAL PROCEDURE

The preparation 9 and EPR characterization 8 of the Er-doped HfSiO $_4$ crystals have been reported elsewhere. The Er-doped LuPO $_4$ single crystals employed in this work were grown by a technique 4 , 5

similar to that initially described by Feigelson. ¹⁰ In this procedure the lanthanide oxide (i.e., Lu_2O_3 plus the Er_2O_3 dopant) is mixed with PbHPO₄ and reacted at high temperature (1360°C) in a platinum crucible. Accompanying decomposition of the PbHPO₄ results in the formation of Pb₂P₂O₇, which then serves as a flux during the subsequent crystal growth via spontaneous nucleation during slow cooling (1°C/h).

The absorption spectra were observed by detecting the transmitted light from a 100 watt tungsten-halogen lamp. Transitions between 12,000 and 28,000 cm $^{-1}$ were photographed on a 3.4m Ebert spectrograph with a dispersion of about 5.2 Å/mm, while the transitions between 6,000 and 12,000 cm $^{-1}$ were observed using a 0.5 m Jarrel-Ash scanning monochromator equipped with a PbS detector. The observations were made at 4.2°K and 77°K in the visible region and at 2.0°K and 77°K in the infrared region. In each case the light was analyzed with a linear polarizer oriented in both the parallel and perpendicular directions relative to the c axis of the crystal. The photographic measurements were then repeated at 4.2°K with the crystal in a magnetic field of about 26 kG, with the c axis parallel and perpendicular to the applied magnetic field.

ANALYSIS AND DISCUSSION

The electronic states resulting from an f^n configuration restricted to D_{2d} symmetry can be described by means of an effective Hamiltonian of the following form: 11

$$H = H_1 + H_2 + H_3 + H_4$$

where

$$H_{1} = \sum_{k=0,2,4,6} P^{k} (\sum_{j>i=1}^{n} \sum_{q=-k}^{k} (-1)^{q} C_{q}^{k} (i) C_{-q}^{k} (j))$$

$$H_2 = \zeta \sum_{i=1}^{n} \tilde{t}_i \cdot \tilde{S}_i$$

$$H_{3} = \sum_{i=1}^{n} (B_{0}^{2} c_{0}^{2}(i) + B_{0}^{4} c_{0}^{4}(i) + B_{4}^{4} [c_{4}^{4}(i) + c_{-4}^{4}(i)] + B_{4}^{6} [c_{4}^{6}(i) + c_{-4}^{6}(i)])$$

and H_4 contains configuration interaction terms including α , β , γ , three body interactions (T_k) , and additional magnetic terms (M_k, P_k) . 12

The crystal field states for an odd number of electrons are classified by the Γ_6 and Γ_7 double group representations associated with the D_{2d} site symmetry. The selection rules for electric dipole representations among the Γ_6 , Γ_7 states for linear polarized incident lightare given by:

$$\Gamma_6(\Gamma_7) \rightarrow \Gamma_7(\Gamma_6)$$
 (pol. | C)

$$\Gamma_6(\Gamma_7) \rightarrow \Gamma_6, \Gamma_7 \quad (pol. \perp C)$$

These selection rules are clearly obeyed by the ${\rm Er}^{3+}:{\rm LuPO}_4$ system as they are in previously reported ${\rm Er}^{3+}:{\rm YPO}_4$ spectra. This was not the case, however, for the ${\rm Er}^{3+}:{\rm HfSiO}_4$ crystals that were used in this study. Extra lines in the absorption spectrum of ${\rm HfSiO}_4$ are observed due to

additional sites occupied by the ${\rm Er}^{3+}$ ion. In addition, the transmission of polarized light through the ${\rm HfSi0}_4$ crystals indicated that the particular crystals used must be partially polycrystalline.

Because of the nearly identical structures of $LuPO_4$ and YPO_4 , the spectra of Er^{3+} : $LuPO_4$ were first assigned by correspondence with those of Er^{3+} : YPO_4 . The semi-empirical Hamiltonian was then fitted to each system by least squares minimization of the parameters associated with H_1 , H_2 , and H_3 . The fit to Er^{3+} : YPO_4 served to test the model and the assignments of Er^{3+} : $LuPO_4$. The assignments were then refined and confirmed by comparing the calculated and measured g values where magnetic field splittings could be observed. This procedure was then applied to the Er^{3+} : $HfSiO_4$ spectra by careful comparison with both the Er^{3+} : $LuPO_4$ and Er^{3+} : YPO_4 assignments.

Satisfactory fits were obtained in all three cases. Fifty-five transitions were assigned to crystal field levels from the ${\rm Er}^{3+}:{\rm LuPO}_4$ spectra while 46 transitions were assigned from the ${\rm Er}^{3+}:{\rm HfSiO}_4$ spectra. The free ion parameters associated with ${\rm H}_4$ were relatively insensitive to these data and could not be adjusted by the least squares procedure. Better agreement was obtained, however, when these parameters were left at their ${\rm Er}^{3+}:{\rm LaCl}_3$ values than when removed from the Hamiltonian.

The observed and calculated values of the energies and g-values for ${\rm Er}^{3+}$ in ${\rm LuPO}_4$ and ${\rm HfSiO}_4$ appear in Table I, while the values of the parameters determined for all three crystals appear in Table II. The agreement between the calculated g values and the g values observed from EPR measurements 6,7,14,15 for the ground state of ${\rm Er}^{3+}$:HfSiO $_4$ is especially gratifying, as these values are quite different from those observed for

 ${\rm Er}^{3+}$ in ${\rm LuPO}_4$ and ${\rm Er}^{3+}$ in ${\rm YPO}_4$.

The $4f^{11}$ electronic configuration of Er^{3+} can be viewed as representing three holes in the $4f^{14}$ closed shell and, accordingly the spectroscopic properties of this ion are of interest for comparison with those of Nd^{3+} , U^{3+} , and Np^{4+} which have three electrons in f shells. For the purpose of making comparisons of this type, studies of Nd^{3+} and U^{3+} in the lanthanide orthophosphates are currently in progress.

Acknowledgments

This work was supported at LBL by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. W-7405-Eng-48. Oak Ridge National Laboratory is operated by Union Carbide Corporation for the U.S. Department of Energy under Contract W-7405-Eng-26.

References

- L.A. Boatner, G.W. Beall, M.M. Abraham, C.B. Finch, P.G. Huray, and M. Rappaz, in <u>The Scientific Basis for Nuclear Waste Management</u>, Vol. II, p. 298, C.J. Northrup, Ed., (Plenum Press), 1980.
- 2. L.A. Boatner, G.W. Beall, M.M. Abraham, C.B. Finch, R.J. Floran, P.G. Huray and M. Rappaz, in <u>The Management of Alpha-Contaminated</u> <u>Wastes</u>, IAEA-SM-246/73, International ATomic Eenrgy Agency, Vienna, Austria (in press).
- 3. M.M. Abraham, L.A. Boatner, T.C. Quinby, D.K. Thomas and M. Rappaz, Radioactive Waste Management, Vol. I, No. 2 (in press).
- 4. M. Rappaz, L.A. Boatner and M.M. Abraham, J. Chem. Phys. <u>73</u>, 1095 (1980).
- 5. M. Rappaz, M. Abraham, J.O. Ramey, and L.A. Boatner, Phys. Rev. B 23, 0000 (1981).
- 6. L.A. Boatner, M. Rappaz and M.M. Abraham, in <u>The Scientific Basis for Nuclear Waste Management</u>, vol. III, J.G. Moore, Ed., (Plenum Press), 1981.
- 7. M.M. Abraham, L.A. Boatner, and M. Rappaz, in <u>Nuclear and Electron</u>

 <u>Resonance Spectroscopies Applied to Materials Science</u>, E.N. Kaufmann
 and G.K. Shenoy, Eds., (Elsevier North Holland), 1981.
- 8. R.W. Reynolds, L.A. Boatner, C.B. Finch, A. Chatelain, and M.M. Abraham, J. Chem. Phys. <u>56</u>, 5607 (1972).
- 9. C.B. Finch, L.A. Harris and G.W. Clark, Am. Mineralogist <u>49</u>, 782 (1964).
- 10. R.S. Feigelson, J. Am. Ceram. Soc. <u>47</u>, 257 (1964).

- 11. B.G. Wybourne, <u>Spectroscopic Properties of the Rare Earths</u>, John Wiley & Sons (1965).
- 12. W.T. Carnall, H.C. Crosswhite, and H.M. Crosswhite, "Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanide in LaF₃," Argonne National Laboratory Report, (1977).
- 13. Dieter Kuze, Z. Physik 203, 49 (1967).
- 14. M.M. Abraham, L.A. Boatner, and M. Rappaz (in preparation).
- 15. M. Dzionara, H.G. Kahle, and F. Schedewie, Phys. Stat. Sol. (b) 47, 135 (1971).

											Tab	le I										
	Er ³⁺ : LuPO ₄												Er ³⁺ : Hf SiO ₄									
Sym	Ene (cm cal			11	ors	S	igenve LQ(2J, large	,2J _z)	S	ositic LQ(2J, secor	2J _z)	Sym	Ene (cm	ergy (-1) obs	Spl g cal	itting l	g _j		Eigenvecto SLQ(2J,2J largest)	mposit: SLQ(2.	J,2J _z)
Γ ₇	-1 35 49 100 132 229 246 286 6548 6556 6608 6619 6647 6687	0 36 53 98 6535 6544 6602 6615 6641 6682 6695 10206	6.77 3.31 -7.14 16.05 -5.79 -7.17 -1.33 14.39 2.69 4.04 -5.32 8.63 2.23 -2.00 -9.00 1.29 3.57	6.39 ^a 4.9 7. 3.	4 4. 92 97 75 87 53 33 51 90 96 39 83 97 14 08 45	97 ^a 71 4 68 4 78 4 83 4 45 4 47 4 82 4 88 4 60 4 65 4 68 4 30 4 65 4 70 4 46 4	I (15, I (13, I (11, I)	7) 5) -11) -11) -13) 5) 7) -13) 5) -7) -13) -13) -13) -11) -11) -17)	9 44 22 4 42 4 42 4 42 4 42 4 42 4 42 4		-1) -3) -3) -3) -3) -3) -3) -3) -3) -3) -3	Γ ₇ Γ ₆ Γ ₇	-1 28 39 58 100 165 271 298 6541 6542 6564 6576 6600 6712 6728 10183	0 30 59 6548 6530 6564 6580 6597	3.77 7.1434 4.31 -5.97 12.31 -1.2587 9.10 .20 3.02 -2.86 -6.59 -1.0264 -9.75 .83 1.36	4.32 ^b		6.68 ^b 41 59 44 45 65 80 63 81 58 47 36 59 68 64 79 73	4I (15, 15, 4I (13, 15, 4I (11, 15, 15, 4I (11, 15, 4I (11, 15, 15, 15, 4I (11, 15, 15, 15, 4I (11, 15, 15, 15, 15, 4I (11, 15, 15, 15, 15, 15, 4I (11, 15, 15, 15, 15, 15, 15, 15, 15, 15,) 25) 34) 27) 30) 22) 6) 24) 9) 25) 32) 32) 32) 32) 32) 32) 32) 32) 33) 33) 33) 33) 33) 34) 35) 36) 37) 38)	4I (1. 4I	5, -9) 5, -9) 5, -9) 5, -3) 5, -9) 5, 5) 5, 5) 5, 7) 3, 5) 3, -9) 3, -3) 3, 7) 3, 5) 3, 7) 1,-11) 1, -9)
Γ ₇ Γ ₆ Γ ₇ Γ ₆ Γ ₇	10246 10257 10272 12363 12429	10252 10256 10274 12372 12442 12432 12531	-1.47 -4.38 -4.94 2.65 -6.97 92 1.47 2.74	1. 3. 3. 3.10 3. -8.25 1. -1.64 3.	36 25 81 55 3. 10 3. 55 3.	31 4 34 4 46 4 .07 39 4 .33 44 4 .17 39 4 .23 4	I (11, I (11, I (11, I (9, I (9, I (9,	-9) -3) -9) -5) -9) -3)	26 4 30 4 29 4 13 4 14 2 13 4	I (11, I (11, I (11, I (9, H2(9,	7) -11) -1) -3) -9) 5) -1)	Γ ₇ Γ ₆ Γ ₇ Γ ₆ Γ ₇ Γ ₆	10209 10279 10290 12332 12413 12443	12327	-3.16 50 55 2.20 -6.97 46 3.18 1.11		4.23 5.18 5.61 3.83 1.21 3.83 .16 3.48	52 54 69 35 47 34	4I (11, -9 4I (11, -9 4I (11, -1 4I (11, -1 4I (9, -9 4I (9, -9 4I (9, -9 4I (9, -1	29) 26) 12) 16) 15) 16	4I (1 4I (1 2H2(1 4I (9 2H2(9 4I (9	1, 7) 1, 5) 1, -1) 9, -3) 9, -9) 9, 5)

Table I Continued

	Er ³⁺ : LuPO ₄											Er 3+: Hf SiO ₄											
Sym	Energy (cm ⁻¹)	_	litting				igenve					Sym		ergy	_	itting				Eigenvector		-	
	cal obs	cal	obs	cal cal	-		LQ(2J, large	_		SLQ(2J seco	~			n) obs	cal	obs	lg _] cal	-		SLQ(2J,2J _z) largest		SLQ(2J seco	Z
Γ,	15261 15235	4.11		3.05	3.02	37 4	F (9,	7)	18	4F (9	, -1)	۲,	15213	15200	1.76		4.19	4.10	37	4F (9, -1)	20	4F (9	7)
,	15290 15271			5.25								,	15220		.86	1.44				4F (9, -3)			
0	15301 15277			2.21								Ų	15297		4.59	3.82	.82			4F (9, 7)			
r ₇	15336 15320	15	. 40	4.84								,	15319		1.41		5.18			4F (9, 5)			
Γ6	15378 15363	1.00		5.22								_	15369		-9.84		.63		56	4F (9, -9)	24	41 (9	, -9)
Γ_6	18367 18364	-5.25	-5.33	.00								,	18335			-1.00	3.41		66	4S (3, -1)	18	2P (3	, -1)
Γ ₇	18396 18404	-1.73	-1.97	3.42	3.35	67 4	s (3,	-1)	18 2	2P (3	, -1)	Γ,	18383	18381	-5.38	-4.50	.01		66	4s (3, -3)	18	2P (3	, -3)
Γ_6	19102 19078	2.34	3.07	6.18	6.01	28 2	H2(11,	5)	23	4G (11	, 5)	Γ6	19114		1.26		6.33		23	2H2(11, 5)	20	2H2(11	., -3)
Γ_7	19135	5.05		2.86		31 2	H2(11,	7)	25	4G (11	, 7)	Γ,	19134	19135	2.72		4.69		22	2H2(11, -1)	20	2H2(11	., 7)
Γ_6	19165 19140	-11.05	-10.00	.61	. 48	40 2	H2(11,	-11)	32	4G (11	,-11)	Γ,	19155	19146	-11.33	-8.00	.19	.20	42	2H2(11,-11)	33	4G (11	.,-11)
Γ_7	19190 19178	-3.15	6.30	.77	• 34	20 2	H2(11,	-9)	15	2H2(11	, -1)	Γ ₇	19188	19189	-2.00		3.10		21	2H2(11, -9)	17	2H2(11	., 7)
Γ_6	19193 19198	-1.37	.08	5.55	5.80	27 2	H2(11,	-3)	21	4G (11	, -3)	Γ_6	19204		.06		6.12		25	2H2(11, -3)	19	2H2(11	., 5)
Γ_7	19223	-5.26		4.73		25 2	H2(11,	-9)	19	4G (11	, -9)	Γ_7	19224	19217	-4.08		5.21		23	2H2(11, -9)	17	4G (11	., -9)
Γ_6	20493 20483	-2.74	-2.90	2.47	2.04	83 4	F (7,	-3)	8 4	4F (7	, 5)	Γ_6	20438	20424	-3.11	-3.23	2.00	1.23	86	4F (7, -3)	5	4F (7	, 5)
Γ_7	20504	8.42		• 03		91 4	F (7,	7)	4	2G1(7	, 7)	Γ7	20467	20493	95		4.72		89	4F (7, -1)	4	2G1(7	, -1)
Γ_6	20560 20554	5.10		2.52		83 4	F (7,	5)	8	4F (7	, - 3)	Γ_6	20534	20535	5.55		2.08		86	4F (7, 5)	. 5	4F (7	, -3)
Γ_7	20565 20561	-1.04		4.76		91 4	F (7,	-1)	4	2G1(7	, -1)	Γ_7	20561	20564	8.27		.10		89	4F (7, 7)	4	2G1(7	, 7)
Γ_6	22149 22154	3.49		1.49		67 4	F (5,	5)	15	4F (5	, -3)	Γ_6	22142	22126	 59		1.80	1.62	51	4F (5, -3)	29	4F (5	, 5)
Γ_7	22176 22182	-1.08		3.06		83 4	F (5,	-1)	12	2D1(5	, -1)	Γ_7	22150	22155	-1.16	-1.70	3.15		84	4F (5, -1)	12	2D1(5	, -1)
Γ_6	22177 22192	-1.41		1.94		68 4	F (5,	-3)	14	4F (5	, 5)	Γ_6	22199	22215	2.13		2.42		52	4F (5, 5)	31	4F (5	, -3)
Γ_6	22522	-2.18		. 40		60 4	F (3,	-3)	20	2D1(3	, -3)	Γ_7	22458		70		1.53		61	4F (3, -1)	20	2D1(3	, -1)
Γ_7	22537 22541	82		1.45		62 4	F (3,	-1)	20	2D1(3	, -1)	Γ_6	22564		-1.68		. 54		59	4F (3, -3)	20	2D1(3	·, -3)
Γ_6	24487 24492	3.26	5.01	4.22	2.01	18 4	F (9,	5)	14	2G1(9	, 5)	Γ_6	24418	24423	2.24	2.70	4.72	4.50	15	4F (9, 5)	12	2G1(9	, 5)
Γ_7	24540 24539	- 8.53		1.19		21 4	F (9,	-9)	16	2G1(9	, -9)	Γ_6	24507		10		4.73		15	4F (9, -3)	11	2G1(9	, -3)
Γ_6	24547 24530	-1.15		4.21		18 4	F (9,	-3)	14	2Gl(9	, -3)	Γ_7	24513	24512	• 04	.80	4.27		12	4F (9, -1)	9	2G1(9	, -1)
Γ_7	24601 24620	2.44		.84		11 4	F (9,	7)	9 2	2G1(9	, 7)	Γ7	24541	24552	-5.86		2.42		18	4F (9, -9)	14	2G1(9	, -9)

 $\label{eq:table I Continued} \text{Er}^{3+}\text{:LuPO}_4 \\$ $\text{Er}^{3+}\text{:HfSiO}_4$

timber and the		************		ANTEC LOS CONTROL CONT			Mary Works		granitation when	164 low, noticemusoków	TO CHARLES THE THE THE TANK THE TANK		-/	ung translation that is	Decomposition and particular and		seemble to the contract of the			nuwayan mada		10.04000#00111100	NAMES OF THE PROPERTY OF THE PARTY OF THE PA
Sym		ergy	Spl	litting	Factors	5		Eigenve	ctor	Con	positio	n	Sym		ergy	Sp1	itting	Factors	:		Eigenvector	Cor	nposition
	(cn	n^{-1})	٤	3	g			SLQ(2J,	2J ₂)		SLQ(2J,	2J ₂)		(cr	n ⁻¹)	g	11	lg;	1		SLQ(2J,2J _z)		SLQ(2J,2J _z)
	cal	obs	cal		cal	obs	%	large	est	%	secon	d _		cal	obs	cal	" obs	cal	obs	%	largest	%	second
Γ,	24665	24653	2.83		3.35		11	4F (9,	7)	11	4F (9,	-1)	Γ,	24594	24615	2.58		3.51		11	4F (9, 7)	11	4F (9, -1)
,	26295		•91	1.00	6.45	5.83					4G (11,		,			19	1.54	6.29		29	4G (11, -3)	24	4G (11, 5)
0		26317	2.85								4G (11,					.75	2.10	6.13		36	4G (11, -1)	17	2H2(11, -1)
Γ2	26357	26343	-11.47	-10.58	• 04						2H2(11,		,			-10.82	-9.75	.13	. 72	51	4G (11,-11)	24	2H2(11,-11)
0			-4.14		4.07						4G (11,					-1.96		4.86		30	4G (11, -9)	25	4G (11, 7)
,			09		6.40						4G (11,		,			•33		6.38		28	4G (11, -3)	27	4G (11, 5)
U			-2.13		6.12						4G (11,		0			-2.23		5.86		22	4G (11, -9)	20	4G (11, -1)
Γ,	27343	27346	4.22		2.67		48	4G (9,	. 7)	27	4G (9,	-1)	۲,	27317	27313	-2.74		4.13		31	4G (9, -9)	29	4G (9, -1)
,			1.64	4.14	5.20						4G (9,		- /			. 28		3 • 27		43	4G (9, 7)	31	4G (9, -9)
0	27358		-5.67		1.65		53	4G (9,	-9)	13	4G (9,	7)	Γ,	27334	27331	2.41		5.05		49	4G (9, 5)	28	4G (9, -3)
,	27383		.68	3.33	5.00						4G (9,					17		4.77		49	4G (9, -3)	27	4G (9, 5)
0	27386		-2.01		4.34						4G (9,		- 0			-1.02		4.61		48	4G (9, -1)	15	4G (9, 7)
r ₂	27496		21		7.83		52	2K (15,	-1)	23	2K (15,	7)	Γ,	27485		11.89		2.38		77	2K (15, 13)	5	2K (15, 5)
,	27498		09		7.78		45	2K (15,	-3)	35	2K (15,	5)	Γ,	27509		14.24		.60		77	2K (15, 15)	4	2L (15, 15)
	27641		3.44		5.81		44	2K (15,	13)	29	2K (15,	-11)	Γ,	27528		-8.52		1.66		70	2K (15,-11)	10	2K (15, -3)
Γ,	27663		-1.23		6.69		48	2K (15,	-9)	35	2K (15,	7)	Γ,	27556		-3.06		6.26		47	2K (15, -9)	23	2K (15, -1)
r,	27682		.70		5.64		41	2K (15,	-11)	36	2K (15,	13)	Γ,	27670		. 49		7.25		44	2K (15, 5)	27	2K (15, -3)
Γ,	27725		12.50		.03		72	2K (15,	15)	7	2K (15,	- 9)	Γ_7	27674		.83		6.19		50	2K (15, 7)	33	2K (15, -9)
Γ,	27783		.06		7.61		37	2K (15,	-3)	36	2K (15,	5)	Γ,	27891		09		5.76		30	2K (15, -1)	19	4G (7, -1)
	27789		.86		7.27		34	2K (15	, -1)	31	2K (15,	7)	Γ,	27891		.13		1.76		24	4G (7, -3)	15	2G1(7, -3)
	27953		1.41		3.30		23	4G (7	, 5)	17	4G (7,	-3)	Γ	27915		1.94		4.70		26	2K (15, -3)	18	4G (7, 5)
0	27972		1.09		2.78		30	4G (7	-1)	18	2G1(7,	-1)	Γ,	27941		6.59		.30		37	4G (7, 7)	22	2G1(7, 7)
	27981		5.49		1.01		29	4G (7	, 7)	17	2G1(7,	7)	Γ,	27966		02		5.54		27	2K (15, -1	18	4G (7, -1)
Γ6	27986		. 47		3.48		22	4G (7	, -3)	17	4G (7,	5)	Γ6	27967	27984	•10		5.26		20	2K (15, -3)	14	4G (7, -3)

afrom reference 8, breference 5

Table II.	Crystal Field	Parameters (cm ⁻¹)	for Er ³⁺ in:
Parameter	LuPO ₄	YPO ₄	HfSiO ₄
F ²	97015	97058	97537
$_{\mathrm{F}}^{4}$	69141	69142	68528
_F 6	48232	48232	49052
ζ	2366	2368	2367
B_0^2	146	279	-531
$^{4}_{0}$	68	155	404
B 4	-760	 756	-927
B 6	-643	≈537	-464
в <mark>6</mark>	~89	····141	-4
FO	44051	44062	44134
~ *	15.9	15.9	15.9
β [*]	632.0	632.0	632.0
, ,	2017.	2017.	2017.
T ^{2*}	157.5	157.5	157.5
T ^{3*}	48.0	48.0	48.0
T ^{4*}	18.0	18.0	18.0
т ^{6*}	-342.0	-342.0	-342.0
T 7*	214.0	214.0	214.0
T ^{8*}	449.0	449.0	449.0
MO*	4.5	4.5	4.5
² *	2.52	2.52	2.52
4* M	1.71	1.71	1.71
P ^{2*}	667.0	667.0	667.0
P ^{6*}	500.3	500.3	500.3
O	13.2	14.7	14.5

^{*}from reference 12

		87
		'o
		4.
		e ^r